Optimization

Homework 1 Solutions

1.

(a). We can rewrite f as

$$
f(x)=\frac{1}{2} x^{T}\left[\begin{array}{cc}
2 & 6 \\
6 & 14
\end{array}\right] x+x^{T}\left[\begin{array}{l}
3 \\
5
\end{array}\right]+6
$$

The gradient and Hessian of f are

$$
\begin{aligned}
\nabla f(x) & =\left[\begin{array}{cc}
2 & 6 \\
6 & 14
\end{array}\right] x+\left[\begin{array}{l}
3 \\
5
\end{array}\right] \\
F(x) & =\left[\begin{array}{cc}
2 & 6 \\
6 & 14
\end{array}\right]
\end{aligned}
$$

Hence $\nabla f\left([1,1]^{\mathrm{T}}\right)=[11,25]^{\mathrm{T}}$.
(b). Suppose $\mathrm{d}=\left[\mathrm{d}_{1}, \mathrm{~d}_{2}\right]^{\mathrm{T}}$ and $\mathrm{d}_{1}{ }^{2}+\mathrm{d}_{2}{ }^{2}=1$

Then directional derivative $=\nabla f\left(x^{\mathrm{T}}\right) \mathrm{d}=[11,25]\left[\begin{array}{l}\mathrm{d} 1 \\ \mathrm{~d} 2\end{array}\right]=11 \mathrm{~d}_{1}+25 \mathrm{~d}_{2}$

$$
\begin{aligned}
& \text { Let } f=11 \mathrm{~d}_{1}+25\left(1-\mathrm{d}_{1}^{2}\right)^{1 / 2} \\
& \qquad \begin{array}{l}
\prime \\
\prime
\end{array}=11+\frac{25}{2}\left(1-\mathrm{d}_{1}^{2}\right)^{-1 / 2}\left(-2 \mathrm{~d}_{1}\right)=0 \\
& \mathrm{~d}_{1}=\frac{11}{\sqrt{11^{2}+25^{2}}}, \mathrm{~d}_{2}^{2}=\frac{25}{\sqrt{11^{2}+25^{2}}} . \text { Hence, } \mathrm{d}=\left[\frac{11}{\sqrt{11^{2}+25^{2}}}, \frac{25}{\sqrt{11^{2}+25^{2}}}\right]^{\mathrm{T}} .
\end{aligned}
$$

(c). The FONC in this case is $\nabla f(x)=0$, The only point satisfying the FONC is $x^{*}=\frac{1}{2}\left[\begin{array}{c}3 \\ -2\end{array}\right]$,

The point above does not satisfy the SONC, because the Hessian is not positive definite (its determinant is negative). Therefore, f does not have a minimizer.
2.
(a). We can rewrite f as

$$
f(x)=\frac{1}{2} x^{T}\left[\begin{array}{ll}
4 & 4 \\
4 & 2
\end{array}\right] x+x^{T}\left[\begin{array}{l}
3 \\
4
\end{array}\right]+7
$$

The gradient and Hessian of f are

$$
\begin{aligned}
\nabla f(x) & =\left[\begin{array}{ll}
4 & 4 \\
4 & 2
\end{array}\right] x+\left[\begin{array}{l}
3 \\
4
\end{array}\right] \\
F(x) & =\left[\begin{array}{ll}
4 & 4 \\
4 & 2
\end{array}\right]
\end{aligned}
$$

Hence $\nabla f\left([0,1]^{\mathrm{T}}\right)=[7,6]^{\mathrm{T}}$.
directional derivative $=\nabla f\left(x^{\mathrm{T}}\right) \mathrm{d}=7$
(b). The FONC in this case is $\nabla f(x)=0$, The only point satisfying the FONC is $x^{*}=\frac{1}{4}\left[\begin{array}{c}-5 \\ 2\end{array}\right]$, f does not have a minimizer, because it does not satisfy SONC.
3. $\nabla f(x)=[0,5]^{\mathrm{T}}, \mathrm{d}^{\mathrm{T}} \nabla f(x)=6 \mathrm{~d}_{2}$, where $\mathrm{d}=\left[\mathrm{d}_{1}, \mathrm{~d}_{2}\right]^{\mathrm{T}}$
(a). Because d_{2} is allowed to be less than zero, it does not satisfy FONC.
(b). It satisfies SONC.
(c). x^{*} is not a local minimizer.
4.
(a). x^{*} satisfies FONC.
(b). x^{*} does not satisfy SONC. ex: $\mathrm{F}(\mathrm{x})=\left[\begin{array}{cc}8 & 0 \\ 0 & -2\end{array}\right]$, if $\mathrm{d}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, then $\mathrm{d}_{1}{ }^{\mathrm{T}} \mathrm{F}_{1}>0$ if $d_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, then $\mathrm{d}_{2}{ }^{\mathrm{T}} \mathrm{F} \mathrm{d} 2<0$
(c). x^{*} is not a local minimizer.
5. $f^{\prime}(x)=\nabla f(x)=2 x-4 \sin x$.
$f^{\prime \prime}(x)=\mathrm{F}(\mathrm{x})=2-4 \cos x$.
Using Newton's method : $x^{(\mathrm{k}+1)}=x^{(\mathrm{k})}-\frac{f^{\prime}(x)}{f^{\prime \prime}(x)}$.
$x^{(1)}=-7.4727 ; x^{(2)}=14.4785 ; x^{(3)}=6.9351 ; x^{(4)}=16.6354$.
6. $g^{\prime}(x)=\nabla f(x)=4(2 x-1)+2^{14}(4-1024 x)^{3}$

Using $x^{(\mathrm{k})}=\left[g\left(x^{(\mathrm{k})}\right) x^{(\mathrm{k}-1)}-g\left(x^{(\mathrm{k}-1)}\right) x^{(\mathrm{k})}\right] /\left[g\left(x^{(\mathrm{k})}\right)-g\left(x^{(\mathrm{k}-1)}\right)\right]$ to calculate until $\left|x^{(18)}-x^{(17)}\right|<x^{(17) *} 10^{-5}$
Hence, x^{*} is 0.0039671

$$
g\left(x^{*}\right)=0.9846 .
$$

